

The Potassium Challenge

- Potassium is linked to colour in fruit.
- Potassium can be viewed somewhat as an antidote to excessive Nitrogen¹
- Nitrogen / Potassium ratio < 1.5 : 1 is desirable for colour²

Table: Leaf test result taken in December

Block	Nitrogen (%)	Potassium(%)	Magnesium (%)		Comments
1	2.3	1.8	0.29		Highly coloured large firm fruit
2	2.8	1.1	0.36		Poorly coloured soft small fruit
Optimum:	2.3-2.8%	1.5-1.8%	0.25 – 0.30%		
Block	N : K ratio	K : Mg ra	tio		Comments
1	1.3 : 1	6.2 : 1		Optimum Ratio	
2	2.5 : 1	3.1:1		Need more K to balance	
Target	< 1.5 : 1	< 6.0 : 1			

Biostim K is a 30% w/v complexed product providing ample K to correct deficiencies

Why Biostim Potassium

- Fast correction in K deficiency via foliar
- Does not contain N, in order to focus on the N:K ratio
- 100% of the Potassium content is available
- Biostim K is fully complexed (not all chelates are the same)

¹ APAL The Nitrogen and Potassium partnership, Dean Rainham, Sept. 2015

² APAL Leaf Nutrient rations, Dean Rainham, Sept 2015